Feature Selection for fMRI Classification Across Multiple Human Subjects
نویسنده
چکیده
This paper investigates the use of fMRI data to develop a classifier to identify a subject’s cognitive state during a particular time interval. In particular, data from a set of subjects is used to decode the cognitive state of a new subject not used in the training process. This is a difficult task because each subject may produce different activation for a particular task and each has a different size and shape of brain.
منابع مشابه
Feature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملfMRI Classification of Cognitive States Across Multiple Subjects
With the evolvement of fMRI’s, a great amount of attention has been given to classifying cognitive states of human beings. Several machine learning approaches have been used to train single-subject classifiers to do so. We present a different method using a neural network and a RBF SVM to train one classifier across all subjects. For the single-subject classifier case, we experiment with PCA as...
متن کاملFeature Selection Based on Genetic Algorithm in the Diagnosis of Autism Disorder by fMRI
Background: Autism Spectrum Disorder (ASD) occurs based on the continuous deficit in a person’s verbal skills, visual, auditory, touch, and social behavior. Over the last two decades, one of the most important approaches in studying brain functions in autistic persons is using functional Magnetic Resonance Imaging (fMRI). Objectives: It is common to use all brain regions in functional extracti...
متن کاملClassification of Multiple Interleaved Human Brain Tasks in Functional Magnetic Resonance Imaging
AbstrAct Pattern recognition in functional magnetic resource imaging (fMRI) is a novel technique that may lead to a quantity of discovery tools in neuroscience. It is intended to automatically identify differences in distributed neural substrates resulting from cognitive tasks. Previous works in fMRI classification revealed that information is organized in coarse areas in the neural tissues rat...
متن کاملA Novel Approach to Feature Selection Using PageRank algorithm for Web Page Classification
In this paper, a novel filter-based approach is proposed using the PageRank algorithm to select the optimal subset of features as well as to compute their weights for web page classification. To evaluate the proposed approach multiple experiments are performed using accuracy score as the main criterion on four different datasets, namely WebKB, Reuters-R8, Reuters-R52, and 20NewsGroups. By analy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006