Feature Selection for fMRI Classification Across Multiple Human Subjects

نویسنده

  • Heather Dunlop
چکیده

This paper investigates the use of fMRI data to develop a classifier to identify a subject’s cognitive state during a particular time interval. In particular, data from a set of subjects is used to decode the cognitive state of a new subject not used in the training process. This is a difficult task because each subject may produce different activation for a particular task and each has a different size and shape of brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

fMRI Classification of Cognitive States Across Multiple Subjects

With the evolvement of fMRI’s, a great amount of attention has been given to classifying cognitive states of human beings. Several machine learning approaches have been used to train single-subject classifiers to do so. We present a different method using a neural network and a RBF SVM to train one classifier across all subjects. For the single-subject classifier case, we experiment with PCA as...

متن کامل

Feature Selection Based on Genetic Algorithm in the Diagnosis of Autism Disorder by fMRI

Background: Autism Spectrum Disorder (ASD) occurs based on the continuous deficit in a person’s verbal skills, visual, auditory, touch, and social behavior. Over the last two decades, one of the most important approaches in studying brain functions in autistic persons is using functional Magnetic Resonance Imaging (fMRI). Objectives: It is common to use all brain regions in functional extracti...

متن کامل

Classification of Multiple Interleaved Human Brain Tasks in Functional Magnetic Resonance Imaging

AbstrAct Pattern recognition in functional magnetic resource imaging (fMRI) is a novel technique that may lead to a quantity of discovery tools in neuroscience. It is intended to automatically identify differences in distributed neural substrates resulting from cognitive tasks. Previous works in fMRI classification revealed that information is organized in coarse areas in the neural tissues rat...

متن کامل

A Novel Approach to Feature Selection Using PageRank algorithm for Web Page Classification

In this paper, a novel filter-based approach is proposed using the PageRank algorithm to select the optimal subset of features as well as to compute their weights for web page classification. To evaluate the proposed approach multiple experiments are performed using accuracy score as the main criterion on four different datasets, namely WebKB, Reuters-R8, Reuters-R52, and 20NewsGroups. By analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006